

Catelias **Indian Oil Corporation Limited Mathura Refinery** मथुरा रिफाइनरी **Presenting Members :** Ms. Srishti Singh, Assistant Manager (Process)

IOCL – The energy of India

FORTUNE

इंडियनऑयल

IndianOil

Globally Acclaimed Proudly Indian

In an impressive leap, IndianOil has ascended 48 places to secure the 94th rank in the prestigious Fortune 500 list for 2023. With this surge, IndianOil becomes one of only two Indian corporations and the only PSU to have been listed in the top 100 ranking. It is remarkable that IndianOil has consistently featured in the list since 1995. This is a validation of the company's unbroken record of excellence for over two decades.

The Fortune Global 500 list ranks corporations globally based on their total revenues for their respective fiscal years.

IOCL – The energy of India

Values at our Core, Guiding us Forever More

IndianOil Values : The North Star guiding our Thoughts and Actions

DRIVE Business Vision Build and nurture meaningful connections; Drive IndianOII closer to its vision with a sense of collective purpose & responsibility

LEAD with Empathy

Put people first in every interaction (internal or external) to understand, prioritize and serve their needs

DARE to be Bold Step outside of comfort zones; Make informed bets and pursue ambitious endeavours with courage, confidence and conviction

60 the Xtra Mile Exceed expectations by going above and beyond the call of duty with perseverance and determination

Our Core Values: Nation-First I Care I Innovation I Passion I Trust

Mathura Refinery

1982

भूगा रिफाइनरी का शिखन्यास मन्त्री श्रीमती इन्दिरा ग्राप्ट गर दिनाक २ अक्तूबर. १६७ ने सम्पन्न हुआ।

Late Prime Minister Smt. Indira Gandhi, laid the foundation stone of Mathura Refinery on 2nd October, 1973.

Mathura Refinery is a Public Sector Refinery, built in collaboration with erstwhile USSR

Mathura Refinery

Naphtha

Propylene

Liquefied

Motor Spirit

EBMS

Aviation

Turbine Fuel

Kerosene

Diesel Fuel

(HSD)

Furnace Oil,

Bitumen

Sulfur

First Indian refinery to produce Ethanol blended Motor Spirit at refinery ocation

P100 First refinery in India to produce XP 100 – step towards Atma Nirbhar 00 octane premium petrol Bharat

1st refinery in the world to be accredited with **ISO-18001 (Occupational** Health & Safety Management System) certification in Nov'98, ISO-14001 (Environment Management System) certification in July'96.

1st industry in India for which Scientific Environmental Impact Assessment (EIA) was study carried out before commissioning due to its location sensitive Taj Trapezium Zone (TTZ).

Set up a Hospital (Swarn Jayanti Samudaik Hospital) outside township for community welfare in April'99.

MATHURA REFINERY – A UNIQUE REFINERY

Confederation of Indian Industry

Specific Energy Consumption in last 3 years

 $\sigma^{\mathcal{P}} \sigma^{\mathcal{P}}$ $\sigma^{\rho,\rho}$ **MBN Energy Intensity Index MBN** performance **Ell performance** 65.00 100.00 64.00 2020-21, 95.00 2020-21, 63.12 2021-22, 88.76 2021-22, 90.00 62.67 63.00 86.38 85.00 62.00 80.84 MBN 80.00 2022-23, 61.00 60.49 75.00 60.00 70.00 59.00 65.00 58.00 60.00 63.12 in (2020-21) 88.76 in (2020-21) 7 % 9 % 60.49 in (2022-23) 80.84 in (2022-23)

Specific Energy Consumption Thermal & Electrical

Awards & Accolades/Certifications

Confederation of Indian Industry

Confederation of

Indian Industry

CII Energy Efficient Unit Award 2022 for 3rd time in a row

UPNEDA

ERTIF

ISC

Uttar Pradesh State Energy Conservation Award-2022

Refinery of the year FIPI Award 2022

Award of Excellence in Consistent TPM Commitment in 2019

CEI	RTIFIC	ATE OF R	EGISTRAT	ION
INTERGERT hereby certil	ies that the	Energy Manag	ement System o	·
Indian Oil Corpo	ration	Limited-	Mathura Re	finery
Indian Oil Corporation Ltd Mathura 281005 Uttar Pre	(Refinerie deah -Indi	s Division) P.O.	. Mathura Refiner	Y
Has been successfully as	sessed as	per the requirem	nents of	
ISO 50001:2018				
For the scope of				
Manufacturing and Supp Support Services.	lying of P	etroleum Prod	ucts Including F	rovisions of
Initial Certification Date Certificate Issue Date Recertification Date		: January 25. November 3	. 2018 30, 2020 29, 2023	
Registration Number: IC	-En-20111	09		
			4	mb-1-it
	-	and	Issued o	n behalf of InterC
	INTER	CERT	неа	(- certifications
	Pere	- 20		S CIAL

ISO 50001:2018 Certification

ISO 16064 recertification

Confederation of Indian Industry

- >Worldwide Average Refinery Ell reduction : 1 Ell/ year
- >28.0 Ell Reduction in 12 years (2.3 Ell/Year reduction)
- > One quartile reduction in Ell from Q3 to Q2 in Solomon study of 2020.
- >MR performance has further improved its performance in Solomon study 2022 . Ell further reduced from 87 to 83

IOCL's Emission Reduction Plan – Refinery Operations

* For existing Refinery, excluding projects.

20.53 MMTCO_{2e} for 2021 is Scope 1 & Scope 2 for IOCL Refineries & PNC excluding CPCL (23.77 MMTCO_{2e} incl. CPCL)

Mathura Refinery's Future Energy Conservation Projects for achieving-Net Zero Milestone

FCCU WGC steam turbine replacement with motor (10,500 SRFT) Replacement of HP steam exchanger with electric heater (6000 SRFT) Conversion of steam tracing with electrical tracing (VGO, VR, Vac. Slop, IFO & Bitumen lines) – 4000 SRFT First ever implement of high speed Hot Water belt in the FCCU (6000 SRFT)	r implementation > 225 MTPA CO2 eq) (~30,000SRFT ⇔ 1 MBN ⇔ 121 MTPA CO	D2 eq)
motor in	acement with motor T) Replacement of HP steam exchanger with electheater (6000 SRFT) First ever inplement of high speed	:ric
Stoppage of 2 out of 3 GT post grid power import (65,500 SRFT) Conversion of steam tracing with electrical tracing in	t grid power import T) Conversion of steam tracing with electrical traci	ng in
Converting TPS STG from condensing cum backpressure to fully backpressure type(4000 SRFT) Replacement of steam turbine with motor in NPRU	condensing cum sure type(4000 SRFT) with motor in NPRU	4B & CU

Sr I	No.	Scheme	Category (Inhouse/PCRA/EIL/CH T/RPIP etc)	Savings (SRFT/Yr)	Savings (Million Kcal/Yr)	Savings Millions	Completion Date (MMM-YY)	Investment in Millions
1	1	Perlite Insulation on HP Steam Header (2 nd Phase-8.8 KM)	In-house	1905	19050	65	FY 2023-24	72.2
	2	Installation of additional CPH module in HRSG 2	In-house	1300	13000	76	Completed	50.9
3	3	High emissivity furnace coating in the AVU furnaces	In-house	920	9200	54	Completed	17
2	4	DHDT complete off gas routing to PSA- 140 (Stab offgas, stripper offgas)	In-house	350	3500	20	FY 2023-24	0.5
5	5	Reduction in LP steam consumption in HGU-1 Deareator 06-V-004.	In-house	1200	12000	70	Completed	0
(6	Modification in IGV modulation to increase Cogen efficiency of GT/HRSG-2	In-house	200	2000	12	Completed	0
-	7	Cleaning of the AVU preheat exchangers through online chemical cleaning to reduce downtime	In-house	2300	23000	135	FY 2023-24	
8	8	Implementation of coracoat coating in the cooling water pumps	In-house	1200	12000	70	FY 2023-24	7

Savings Category **Completion Date** Savings Investment in (Inhouse/PCRA/EIL/ Savings Millions Sr No. Scheme (Million (SRFT/Yr) (MMM-YY) Millions Kcal/Yr) CHT/RPIP etc) Application of Electrical tracing in offsite piping and tank farm in place of stream tracing (MP steam cons in 80 9 In-house 3000 30000 176 FY 2023-24 Bitumen tank Farm: 15 TPH; Power requirement: 2.5 MW). Provision of HP rich amine flash vessel 10 in OHCU to recover fuel gas In-house 800 8000 47 70 FY 2023-24 Replacing WGC condensing turbine 11 In-house 4900 49000 287 FY 2023-24 800 drive with motor in FCCU Replacing MAB Condensing Turbine 12 In-house 293 FY 2023-24 5000 50000 800 Drive with Motor Drive in FCCU Conversion of existing STG (partial 13 condensing type) to back pressure In-house 4000 40000 234 FY 2023-24 140 turbine Converting turbine to motor in Heat 14 In-house 5500 55000 322 FY 2023-24 900 pump compressor in NPRU

Major ENCON projects executed in FY 2023-24

Installation of additional CPH module in HRSG 2. Stack temperature reduced by > 30 °C

High emissivity coating in the AVU, VBU & DHDT furnaces. Total 7 number of furnaces, 3% of fuel saving

ENCON Schemes implemented in 2022-23

ENCON Schemes implemented in 2020-21

BBU stoppage, production from VDU bottom (5000 SRFT)

Injection of the BFW in AVU preheat train 3 (4000 SRFT)

Prevention of CRU rich gases from going to FG header (600 SRFT)

Redundant tracing steam isolation in 6 Km of line (1150 SRFT)

condensate recovery in area 153 (1000 SRFT) Net saving: (12550 SRFT ⇔ 1.3 MBN) Stopping Off gas compressor K4 – routing impure H2 thru' bypass (400 SRFT)

> Steam header isolation from First aid to OHCU (400 SRFT)

Innovative Project

Name of Project	Description	Trigger for implementing	Year of implementation	Annual savings	Investment
Hydrogen recovery from LP off gases through PSA 140 Revamp	PSA 140 was revamped to incorporate LP off gases from other units which were originally routed to FG header. After revamp hydrogen was recovered from LP gases and routed to Hydrogen header, there by reducing load on HGU.	Hydrogen savings and reduction in HGU plant load which is a huge energy consumer.	2022-23	4574	140
Energy Management System	Online monitoring tool of refinery, which provides updates on hourly basis on all energy key performance indicators.	Stringent monitoring	2022-23	4000	140
BFW injection for improving AVU pre heat	improvement in PHT-3 of 3 °C, was observed after BFW injection. This activity is carried out on quarterly basis or when ever pre heat drops significantly.	Online exchange cleaning and pre heat improvement	2022-23	854	5

Innovative Projects

BFW injection in Pre Heat train-3 for improving AVU pre heat

Renewable Energy

On Site generation

	Technology	Installed capacity (MW)	Consumption (Million kWh)	Share
2022-23	Solar	0.89	0.912205	0.16
2021-22	Solar	0.89	0.96972	0.17
2020-21	Solar	0.89	0.708281	0.13

Off Site generation

	Solar	Installed capacity (MW) Consumption (Million kWh)		Share
2022-23	Solar	0.35	0.461960	0.08
2021-22	Solar	0.35	0.442281	0.08
2020-21	Solar	0.35	0.264576	0.05

Total Solar Energy generation

GHG- Emission in TMT of CO2e

Confederation of Indian Industry

PAT CYCLE II to VI : IOCL-MR Performance

With focused approach, IOCL- MR has not only achieved but surpassed the target in both PAT II, VI.

Digitalization in Mathura Refinery

EMS dashboard

Steam Leak Reporting P

≡ iAsset | IOCL

Mathura AVU PHT

Daily Average Data 💧 🗛 🗸

Home

*Data points may be missing in case the cleaning rules are not met or in case of any shutdow

AVU PHT Monitoring dashboard

INNOVATION: Ethanol Blended MS : First refinery in India

Challenge I –transportation due to Ethanol being polar in nature.

Overcame by : Addition of Coupler at refinery location

Challenge II – costlier w.r.t MS due to high ethanol cost.

Overcame by – addition of low cost Naptha stream with high Octane Ethanol in MS pool to maintain overall Octane and low cost

Thus Mathura Refinery was able to maintain
1. overall margin in EBMS production
2. reduce the associated carbon footprint of MS
3. helped local farmers/agriculture industries to grow

Diesel Exhaust Fluid is the necessity to comply with the NOx emission norms of BS-VI fuel and it is a remarkable sustainable effort of IOCL towards producing vehicle additives for making the engine exhaust cleaner

AdBlue

DIESEL EXHAUST FLUID

